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Abstract

In this work we study the numerical solution of nonlinear systems arising from stabilized FEM discretizations of
Navier–Stokes equations. This is a very challenging problem and often inexact Newton solvers present severe difficulties
to converge. Then, they must be wrapped into a globalization strategy. We consider the classical backtracking procedure, a
subspace trust-region strategy and an hybrid approach. This latter strategy is proposed with the aim of improve the robust-
ness of backtracking and it is obtained combining the backtracking procedure and the elliptical subspace trust-region strat-
egy. Under standard assumptions, we prove global and fast convergence of the inexact Newton methods embedded in this
new strategy as well as in the subspace trust-region procedure. Computational results on classical CFD benchmarks are
performed. Comparisons among the classical backtracking strategy, the elliptical subspace trust-region approach and
the hybrid procedure are presented. Our numerical experiments show the effectiveness of the proposed hybrid technique.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

We consider the numerical solution of the Navier–Stokes equations modelling incompressible fluid flows.
We use a discretization by stabilized Finite Elements [17] that allows circumventing the Babuška–Brezzi sta-
bility condition. The discretization of these equations usually gives rise to a large-scale system of nonlinear
equations
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where F : Rn ! Rn is a nonlinear differentiable map.
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Due to their large dimension these problems are usually solved by Newton–Krylov methods, that are New-
ton-type methods in which a Krylov method is employed to solve approximately the arising linear systems and
compute a so called inexact Newton step. To enhance the robustness these methods are augmented with a suit-
able globalization strategy.

Well known convergence properties of these methods motivated the works to create robust and locally
fast algorithms and to develop reliable and efficient software [1,3,7,11,15,16,26,27]. Recently, there has
been much research in investigating the convergence behaviour of globalized Newton–Krylov methods
applied to the nonlinear systems arising in the solution of fully coupled large scale CFD problems
[14,25,29,30]. In fact, in these papers it has been shown that the numerical solution of these nonlinear
systems is very challenging and a globalization strategy is needed in order to successfully solve this class
of problems. In the review [25] several representative globalizations are discussed and compared. More-
over in [30] failures of the backtracking strategy along the inexact Newton step have been analyzed. The
backtracking technique shortens the inexact Newton step as necessary to get a sufficient reduction of
the nonlinear residual Euclidean norm iFi. In [30] it has been shown that there are some situations, espe-
cially if the Jacobian of F is ill-conditioned, where the inexact Newton step becomes increasingly orthog-
onal to the gradient of the nonlinear residual norm and the backtracking strategy fails. The failures
are due to the fact that too many backtracks are necessary to get the desired reduction of iFi that a
practical backtracking algorithm detects a failure. In this situation the inexact Newton direction must
be dropped.

Here, the classical backtracking procedure, an elliptical subspace trust-region strategy and an hybrid
approach are considered.

In the subspace trust-region strategy the trial step is computed minimizing the classical quadratic function
within the trust-region in the subspace spanned by the gradient of the function iFi2 and the inexact Newton
step. Once the subspace has been built, the work to compute an approximate solution of the trust-region sub-
problem is trivial since in the subspace the problem is only two dimensional. We remark that this approach has
been considered also in [4] and [5] in the context of affine scaling trust-region methods for bound constrained
nonlinear system and bound constrained minimization problems, respectively. On the other hand, to our
knowledge, this approach has never been employed in conjunction with inexact Newton–Krylov methods
for unconstrained nonlinear systems. We also underline that an alternative approach to trust-region global-
ization for Inexact Newton methods is treated in the very recent paper [26], where a general inexact Newton
dogleg method is developed. In [26] the classical dogleg path, requiring the computation of the Newton step, is
replaced by an approximate dogleg curve that is defined using the inexact Newton step together with approx-
imate steepest-descent directions.

The hybrid globalization strategy we propose here is obtained by a suitable combination of the backtrack-
ing along the inexact Newton step and the two dimensional subspace trust-region previously mentioned. Spe-
cifically, first we use the direction of the inexact Newton step. If it does not work well, i.e. relatively few steps
do not suffice to decrease the value of the nonlinear residual norm, we revert to the subspace trust-region
strategy. Our motivation for dealing with hybrid approaches is that in our opinion the backtracking method
should be the first choice for its simplicity as well its effectiveness [27,29,7], however, in the applications we
are involved with, it is crucial to have at disposal an alternative strategy when the inexact Newton step is a
poor direction and the backtracking fails. In fact, trust-region methods have the potential advantage of gen-
erating directions that may be stronger descent directions than the inexact Newton step. Then, the switch to
a trust-region strategy may improve the practical applicability of backtracking Newton–Krylov methods and
may prevent failures as described in [30]. On the other hand trust-region techniques require the computation
of the gradient of iFi2 and this calls for the product of the transpose of the Jacobian of F with a vector,
while in backtracking Newton–Krylov methods only the action of the Jacobian times a vector is needed.
Then, trust-region Newton–Krylov method cannot be straightforwardly implemented in a matrix-free man-
ner, i.e. avoiding the explicit computation of the Jacobian by approximating the products of the Jacobian
and a vector by finite differences. We underline that in [7] a matrix-free trust-region strategy has been pro-
posed. Moreover, matrix-free hybrid globalization strategies have been considered in [1] and [3] and they
revealed to be an effective approach that enhances the classical backtracking procedure. However, all these
globalization techniques are strictly based on the iterative solver GMRES [28] and cannot be implemented if
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a different iterative linear solver is chosen. Anyway, we remark that in our context the Jacobian is available
and can be easily evaluated.

The theoretical analysis we performed shows that inexact Newton methods, augmented with the subspace
trust-region strategy or the hybrid technique, are globally and fast convergent.

We carried out an extensive numerical experimentation on classical CFD benchmarks. We analyzed some
implementational issues that are crucial for the effectiveness of the globalization strategies and we compared
the performance of the three globalization procedures in conjunction with the Newton-GMRES method. The
obtained numerical results show that the combination of the two strategies outperforms both the classical
backtracking approach and the subspace trust-region strategy.
2. Incompressible Navier–Stokes model

In this section, the incompressible steady-state Navier–Stokes model and its finite elements discretization,
are presented briefly.

2.1. The continuous problem

We consider the following velocity–pressure formulation of the steady-state, incompressible Navier–Stokes
equations:
� 1

Re
Duþ ðu � rÞuþrp ¼ f in X; ð2:1Þ

r � u ¼ 0 in X; ð2:2Þ
u ¼ 0 on CD; ð2:3Þ
1

Re
ou
on̂
� pn̂ ¼ gN on CN ; ð2:4Þ
where Re is the Reynolds number; X is a bounded domain in R2 with a regular boundary oX that belongs
to the class C0;1 (oX can be locally described by Lipschitz continuous functions [19]); the boundary oX is
split into two subsets CD and CN, where CD is closed and the following conditions holds true:
oX = CD [ CN, CD \ CN = ; and |CD| 6¼ 0; n̂ is the usual unit outward normal vector to oX; f 2 [2(X)]2;
gN 2 ½H

1
2ðCN Þ�2.

Let us first derive a weak formulation of problem (2.1)–(2.4). The functional spaces we deal with are the
usual Sobolev space H 1

0;DðXÞ ¼ fv 2 H 1ðXÞjvjCD
¼ 0g and Lebesgue space L2

0ðXÞ ¼ fq 2 L2ðXÞj
R

X qdX ¼ 0g.
Moreover we set V ¼ ½H 1

0;DðXÞ�
2 and Q ¼ L2

0ðXÞ if |CN| = 0 or Q = L2(X) if |CN| > 0. A weak formulation of
the problem can be written as: Find [u,p] 2 V · Q such that " [v,q] 2 V · Q one has
1

Re
ðru;rvÞ þ ððu � rÞu; vÞ � ðp;r � vÞ ¼ ðf ; vÞ þ ðgN ; vÞCN

; ð2:5Þ

ðq;r � uÞ ¼ 0; ð2:6Þ

where (.,.) denotes the usual inner product in L2(X) or in [L2(X)]2 and ð:; :ÞCN

denotes the inner product in
[L2(CN)]2. Existence and uniqueness of the solution for all positive Re follows from the usual coercivity

inequality and inf–sup condition (see e.g. [19]).

2.2. The discrete problem

In order to discretize problem (2.1)–(2.4), we assume X to be a polygonal domain and we introduce a reg-
ular family of partitions fT hgh of X into triangles which satisfy the usual conformity and minimal-angle con-
ditions [9]. We denote by hT the diameter of the element T 2 T h. The parameter h of the family fT hgh is
defined as h ¼ maxT2T h hT . Let Vh � V and Qh � Q be two conforming finite element spaces based on the par-
tition T h. If we consider the pure Galerkin approximation of the continuous problem (2.5) and (2.6), we have
to satisfy the discrete version of the inf–sup condition [6,19].
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In what follows, we are going to use continuous finite element for the velocity: V h ¼ fvh 2 V \
½C0ðXÞ�2jvjT 2 ½P kðT Þ�2; 8T 2 T hg and the pressure: Qh ¼ fqh 2 Q \ C0ðXÞjqhjT 2 P lðT Þ; 8 T 2 T hg. Here Pi(T)
is the space of polynomials of degree i P 1 on the element T 2 T h. With an arbitrary choice of k and l these
spaces may not satisfy the discrete inf–sup condition [6]. However, this difficulty may be avoided by resorting
to a consistent modified approximation of the problem known as the Streamline Upwind/Petrov Galerkin

(SUPG) method [17,21]: Find [uh,ph] 2 Vh · Qh such that "[vh,qh] 2 Vh · Qh let be:
1

Re
ðruh;rvhÞ þ ððuh � rÞuh; vhÞ � ðph;r � vhÞ þ

X
T2T h

sT �
1

Re
Duh þ ðuh � rÞuh þrph; ðuh � rÞhvh

� �
T

þ
X
T2T h

dT ðr � uh;r � vhÞT ¼ ðf ; vhÞ þ ðgN ; vhÞCN
þ
X
T2T h

sT ðf ; ðuh � rÞvhÞT ; ð2:7Þ

ðqh;r � uhÞ þ
X
T2T h

sT �
1

Re
Duh þ ðuh � rÞuh þrph;rqh

� �
T

¼
X
T2T h

sT ðf ;rqhÞT : ð2:8Þ
Here sT and dT depend on the local conditions of the flow in each element expressed by ReT ¼ mk
kuhk1;T hT

4 1
Re

and

mk ¼ min 1
3
; 2

C�

n o
, C* being the constant of the inverse inequality [20]: h2

TkDvhk2
0;T 6 C�krvhk2

0;T ; 8vh 2 V h: For

linear elements, obviously, mk ¼ 1
3
. Practically, following [17] we set sT ¼ mk

h2
T
8

Re, dT ¼ kmk
kuhk1;T h2

T Re

4
if

0 6 ReT < 1 and sT ¼ hT
2kuhk1;T

, dT = kiuhi1,ThT if ReT P 1. Possible values for k are 1 and 0. By using the SUPG

method, not only we circumvent the inf–sup condition [6,21], but also stabilize the advective operator prevent-
ing the oscillations in the velocity field that appear for high Reynolds numbers [17]. The problem (2.7 and 2.8)
gives rise to a system of nonlinear equations
F ðxÞ ¼ 0; ð2:9Þ
where F : Rn ! Rn and x 2 Rn is the vector of unknown velocity components and pressure.

3. The numerical methods

The core of our approach is an inexact Newton method, that is an iterative procedure that constructs a
sequence of iterates {xk} such that, at each iteration k, the correction �sk ¼ xkþ1 � xk satisfies
F 0ðxkÞ�sk ¼ �F ðxkÞ þ rk; krkk 6 �gkkF ðxkÞk; ð3:1Þ
where F 0 is the system Jacobian, �gk is a suitable scalar in [0,1) called forcing term, rk is commonly referred to
as the residual vector and iÆi always denotes the Euclidean norm. The vector �sk is commonly called inexact
Newton step. The choice of the forcing term �gk has a strong relevance on the performance of inexact Newton
methods as it is shown in [11]. We recall that, under standard conditions, if f�gkg ! 0 then {xk} exhibits local
q-superlinear convergence to a solution x*, while if f�gkg ¼ OðF ðxkÞÞ the convergence rate is quadratic. In [16]
two choices of �gk’s yielding up to quadratic rate of convergence have been proposed.

Here, we embed the inexact Newton method into three different globalization frameworks: the classical
backtracking strategy, an elliptical subspace trust-region procedure and an hybrid approach. This latter tech-
nique was developed in order to enhance robustness of the classical backtracking approach. This goal is
achieved applying the backtracking strategy whenever it works well and reverting to the subspace trust-region
globalization when the inexact Newton step is a poor descent direction.

3.1. Backtracking technique

A widely used inexact Newton method augmented with a backtracking strategy is given by the INB (inexact
Newton Backtracking) method [15,27]. The kth iteration of this method can be sketched as follows:

INB Method

Let xk, gmax 2 (0,1), t 2 (0, 1), 0 < hm < hmax < 1 be given.
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1. Choose �gk 2 ½0; gmax� and compute �sk such that
kF ðxkÞ þ F 0ðxkÞ�skk 6 �gkkF ðxkÞk:

2. Perform the backtracking strategy:

2.1. Set sk ¼ �sk, gk ¼ �gk.
2.2. While iF(xk + sk)i > (1 � t(1 � gk))iF(xk)i do:
Choose h 2 [hm,hmax].
Update sk = hsk and gk = 1 � h(1 � gk).
3. Set xk+1 = xk + sk.

The backtracking strategy performed at Step 2 provides a sufficient decrease of the nonlinear residual norm
iF(x)i. In particular, moving along the direction of the initial inexact step �sk, successively shorter steps sk = sk(gk)
of the form sk ¼ ð1� gkÞ�sk=ð1� �gkÞ are selected. In [15] the following global convergence theorem is proved.

Theorem 3.1. Assume that F is continuously differentiable. If {xk} generated by the INB method has a limit point

x* such that F 0(x*) is nonsingular, then F(x*) = 0 and the sequence {xk} converges to x*. Moreover, eventually the

inexact Newton step �sk is taken.

Then, the convergence rate is governed by the choice of gk’s and up to quadratic convergence can be
obtained with the choices of gk’s described in [16].

3.2. Elliptical subspace trust-region technique

In the classical trust-region approach, at iteration k, the following quadratic model
mkðsÞ ¼
1

2
kF 0ðxkÞsþ F ðxkÞk2 ¼ 1

2
kF ðxkÞk2 þ F ðxkÞTF 0ðxkÞsþ

1

2
sTF 0ðxkÞTF 0ðxkÞs;
and a specified trust-region around the current iterate xk are defined. Letting f(x) be the merit function:
f ðxÞ ¼ 1

2
kF ðxÞk2

; ð3:2Þ
the quadratic model mk(s) is trusted to be an adequate representation of f(xk + s) within the trust-region. Usu-
ally, spherical trust-regions are adopted. On the other hand this choice is not appropriate in case of poorly
scaled functions. In order to give more flexibility to our approach we consider elliptical trust-regions. Then,
the search direction sk is the vector solution of the subproblem
min
s
fmkðsÞ : kDksk 6 Dkg; ð3:3Þ
where Dk 2 Rn�n is a positive definite diagonal matrix and Dk > 0 is the trust-region size. We would like to
mention that (3.3) is a specific case of the more general approach where, given a symmetric positive definite
matrix M, the trust-region is defined using the M-norm:
kskM ¼
ffiffiffiffiffiffiffiffiffiffiffi
sTMs
p

;

and the underlying trust-region subproblem is given by:
min
s
fmkðsÞ : kskM 6 Dkg: ð3:4Þ
In fact, (3.4) reduces to (3.3), whenever M ¼ D2
k . Note that, as the Newton step sN

k ¼ �F 0ðxkÞ�1F ðxkÞ is the glo-
bal minimum of mk(s), if ksN

k kM 6 Dk, then sN
k is the solution of (3.4). Moreover, from Theorem 7.4.1 of [10], it

follows that (3.4) has a unique solution, whenever F 0(xk) is invertible.
The dogleg method is a very common way to compute an approximate solution of the trust-region subprob-

lem. We refer to [24] for a description of the dogleg procedure. Here, we just recall that it is based on the so called
dogleg path, whose definition requires the computation of the Newton step. A straightforward extension of the
dogleg method to the inexact context can be obtained by substituting the inexact step �sk for sN

k in the definition of
the dogleg path. Unfortunately, as it is nicely shown in [26], this straightforward extension is not reliable.



2322 S. Bellavia, S. Berrone / Journal of Computational Physics 226 (2007) 2317–2340
Therefore, we shared the approach given in [8] and replace the full elliptical trust-region subproblem (3.3)
by
min
s
fmkðsÞ : kDksk 6 Dk; s 2 Skg; ð3:5Þ
where Sk is the two-dimensional subspace given by:
Sk ¼ spanfD�2
k rf ðxkÞ;�skg: ð3:6Þ
We underline that the inclusion of the scaled gradient vector D�2
k rf ðxkÞ in Sk will guarantee convergence to a

stationary point of the function f(x). On the other hand, the inclusion of the inexact Newton step will provide
fast local convergence of the inexact Newton method embedded into this procedure.

Due to the low dimension of Sk, an approximate solution sk of problem (3.3) can be easily computed as
we will show in the next section. Then, the trial step sk is accepted if the following standard condition is
satisfied:
qf
k ðskÞ ¼

f ðxkÞ � f ðxk þ skÞ
mkð0Þ � mkðskÞ

P b1; ð3:7Þ
where b1 is a given constant such that b1 2 (0, 1). If (3.7) does not hold sk is rejected, the trust-region is reduced
and a new trial step is computed. In other words, with condition (3.7) a good agreement between the quadratic
model and the merit function f is imposed.

Then, we embed an inexact Newton method into the subspace strategy as follows:

ESTR Method (Elliptical subspace trust-region method)
Given xk, gmax 2 (0, 1), 0 < b1 < b2 < 1, a1 2 (0, 1), Dmin > 0, Dk > Dmin, Dk diagonal n · n matrix, with posi-

tive diagonal entries.

1. Choose �gk 2 ½0; gmax� and compute �sk such that
kF ðxkÞ þ F 0ðxkÞ�skk 6 �gkkF ðxkÞk:

2. Let Sk ¼ spanfD�2

k rf ðxkÞ;�skg.
3. Do

3.1 Find sk ¼ argminfkDksk6Dk ;s2SkgmkðsÞ:
3.2 Set Dk = a1min{Dk,iDkski}.
While qf

k ðskÞ < b1

4. Set xk+1 = xk + sk and choose Dk+1.
5. If qf

k ðskÞP b2 then

set Dk+1 = max(Dmin,2iDkski)

else set Dk+1 = Dk.

Our convergence results for the ESTR method are given in Theorem 3.2 below, whose proof is provided in
Appendix.

Theorem 3.2. Let r > 0 and L ¼ [1k¼0fx 2 Rnjkx� xkk 6 rg be a neighborhood of sequence {xk} generated by the

ESTR method. Assume that F 0 is Lipschitz continuous in L and iF 0(x)i is bounded above on L. Suppose

furthermore that $f(xk) 6¼ 0 for k P 0, the sequences {iDki} and fkD�1
k kg are bounded above. Then,
lim
k!1
krf ðxkÞk ¼ 0: ð3:8Þ
Further, if there exists a limit point x* such that F 0(x*) is nonsingular then, F(x*) = 0 and the sequence {xk} con-

verges to x*. Moreover, eventually a step sk satisfying
kF ðxkÞ þ F 0ðxkÞskk 6 �gkkF ðxkÞk; ð3:9Þ

is taken.
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Note that all the accumulation points of the sequence are stationary points of the function f. Moreover,
eventually an inexact Newton step satisfying (3.1) is taken. Then, the convergence rate is governed by the
choice of gk’s.

We close this subsection with some comments on the generalization of the ESTR method to the more gen-
eral setting given by the trust region problem (3.4). Indeed, in this more general case, let �Sk ¼
spanfM�1rf ðxkÞ;�skg and �Dk be such that M ¼ �DT

k
�Dk, for example �Dk can be the Cholesky factor of M. Then,

substituting Dk for Dk and �Sk for Sk in the ESTR method, we obtain a subspace trust-region method for (3.4)
and the theoretical results stated in Theorem 3.2 continues to hold. However, note that, in this case a linear
system with M must be solved at each iteration.

3.3. The hybrid procedure

Now, we are ready to describe the new hybrid procedure which combines the two globalization strate-
gies. At each iteration the backtracking strategy along the inexact Newton step adopted in algorithm INB
is tried first. If within a maximum number MAXBT of backtracks no progress is found in the norm of the
nonlinear residual, the direction �sk is left and the two dimensional elliptical subspace strategy is applied.
Our intention is to leave the direction �sk when too many backtracks along it are necessary to satisfy
the decrease condition:
kF ðxk þ skÞk 6 ð1� tð1� gkÞÞkF ðxkÞk: ð3:10Þ

This may happen when �sk is nearly orthogonal to the gradient of iFi2 at xk and F 0(xk) is ill-conditioned [30].

The resulting kth iteration can be sketched as follows.

HIN Method (Hybrid inexact Newton Method)
Given xk, gmax 2 (0,1), t 2 (0,1), 0 < b1 < b2 < 1, a1 2 (0,1), 0 < hm < hmax < 1, MAXBT > 0, Dmin > 0,

Dk > Dmin, Dk diagonal n · n matrix, with positive diagonal entries.

1. Choose �gk 2 ½0; gmax� and compute �sk such that
kF ðxkÞ þ F 0ðxkÞ�skk 6 �gkkF ðxkÞk:

2. Perform the backtracking strategy:

2.1 Set sk ¼ �sk, gk ¼ �gk, nbt = 0.
2.2 While iF(xk + sk)i > (1 � t(1 � gk)) iF(xk)i & nbt < MAXBT do:
Choose h 2 [hm,hM]
Update sk = hsk, gk = 1 � h(1 � gk) and nbt = nbt + 1.
3. If iF(xk + sk)i > (1 � t(1 � gk))iF(xk)i
3.1 Let Sk ¼ spanfD�2

k rf ðxkÞ;�skg, ntr = 0.
3.2 Do

3.2.1 Find sk ¼ argminfkDk sk6Dk ;s2SkgmkðsÞ and set ntr = ntr + 1.
3.2.2 Set Dk = a1min{Dk,iDkski}.

While qf

k ðskÞ < b1
4. Set xk+1 = xk + sk and choose Dk+1.
5. If qf

k ðskÞP b2 then

set Dk+1 = max(Dmin,2iDkski)

6. else set Dk+1 = Dk.

The following theorem formalizes the convergence properties of the HIN method. The proof is provided in
Appendix.

Theorem 3.3. Let r > 0 and L ¼ [1k¼0fx 2 Rnjkx� xkk 6 rg be a neighborhood of the sequence {xk} generated by
the HIN method. Assume that F 0 is Lipschitz continuous in L and iF 0(x)i is bounded above on L. Suppose

furthermore that $f(xk) 6¼ 0 for kP0, the sequences {iDki} and fkD�1
k kg are bounded above. If there exists a limit

point x* of {xk} such that F 0(x*) is invertible, then
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(a) iF(x*)i = 0.

(b) limk!1xk = x*;

(c) sk ¼ �sk, for sufficiently large k.

This theorem shows that eventually xk+1 has the form xkþ1 ¼ xk þ �sk. Then, the method inherits the local
convergence properties of the INB method.

4. Implementation details

In this section we discuss some crucial implementation issues. First, we focus on the linear algebra phase.

4.1. Construction of the Jacobian and solution of the linear system

The Jacobian matrix F 0(x) of the system (2.9), at xk, can be easily obtained by differentiating the discrete
equations of the system (2.9) with respect to the components of the vector x. In this process we make the fol-
lowing simplification: at each iteration we consider the stabilization parameter sT of (2.7, 2.8) constant with
respect to the components of the vector xk, i.e. we compute ReT and sT with the velocity components of the
previous iteration.

Common CFD problems require a high number of unknown to be solved. Moreover, usually the Jacobian
matrix has a very large condition number that increases whenever the Reynolds number increases and the
meshsize decreases. Then, when an iterative linear solver is used to compute the inexact Newton step, precon-
ditioning is unavoidable.

In our implementation of the three methods described in the previous section, the inexact Newton step
is computed employing the iterative linear solver GMRES [28] with restart and null initial guess. We use
an additive Schwarz domain decomposition preconditioner, with an ILU incomplete LU factorization with
a level of fill-in equal to 2, Reverse Cuthill–McKee reordering of the factors, and one level of overlapping.
We preconditioned on the right as right preconditioning leaves unchanged the residual of the linear system.
This is quite useful in the context of inexact Newton methods as condition (3.1) is precisely the small
unpreconditioned linear residual termination for iterative linear solvers. If within the maximum number
of GMRES iterations, GMRES failed to provide a vector �sk satisfying (3.1), we continued using the last
GMRES iterate sm

k . This is done letting �sk ¼ sm
k and �gk ¼ kF ðxkÞ þ F 0ðxkÞ�skk=kF ðxkÞk after Step 1 of the

INB, ESTR and HIN methods. We remark that, choosing the null initial guess, the initial residual is given
by iF(xk)i. Then, thanks to the minimization properties of GMRES and right preconditioning, �gk is
ensured to be smaller than one.

The choice of the forcing term has a strong relevance on the performance of the algorithms discussed here.
In all our computations we consider the following four strategies for choosing gk:

� Choice 1 [16,27]: Select �g0 2 ½0; 1Þ and set
�gk ¼
jkF ðxkþ1Þk � kF ðxkÞ þ F 0ðxkÞskkj

kF ðxkÞk
; k ¼ 1; 2; . . .
with the safeguard: �gk ¼ maxf�gk; g
ð1þ

ffiffi
5
p
Þ=2

k�1 g if gð1þ
ffiffi
5
p
Þ=2

k�1 > 0:1;
� Choice 2 [16,27]: Select �g0 2 ½0; 1Þ, c 2 [0,1], a 2 (1, 2] and set
�gk ¼ c
kF ðxkþ1Þk
kF ðxkÞk

� �a

; k ¼ 1; 2; . . .
with the safeguard: �gk ¼ maxf�gk; cga
k�1g if cga

k�1 > 0:1;
� Choice 3: gk = 1.0E�1, "k P 0;
� Choice 4: gk = 1.0E�4, "k P 0.

We underline that the adaptive choice Choice 1 yields q-superlinear convergence of all the three methods
considered. On the other hand, Choice 2 (with c = 0.9 and a = 2) guarantees quadratic convergence.
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4.2. Globalization strategies

The backtracking strategy along the inexact Newton step, in Step 2 of the INB and HIN methods, is imple-
mented as in the code Nitsol [27]. That is, h is chosen minimizing the quadratic function that interpolates iFi in
the direction of the inexact Newton step, see also [25,22].

In Step 3.1 of the ESTR Method and in Step 3.2.1 of the HIN Method, we compute an approximate dogleg
solution of the two-dimensional elliptical subspace trust-region problem as follows. Let W 2 Rn�2 be an ortho-
normal basis for DkSk. Then, a vector p 2 DkSk is such that p = W q for some q 2 R2 and we can write (3.5) as
the following spherical trust-region problem in R2:
min
q2R2
fwkðqÞ : kqk 6 Dkg ð4:1Þ
with wk given by:
wkðqÞ ¼
1

2
kF ðxkÞ þ F 0ðxkÞD�1

k Wqk2 q 2 R2: ð4:2Þ
Therefore, we can compute an approximate solution qtr
k to (4.1) by the dogleg strategy and setting

str
k ¼ D�1

k Wqtr
k we get an approximate solution to (3.5). We recall that qtr

k is the point where the dogleg path
intersects the trust-region boundary. The dogleg path is the piecewise linear path connecting the origin, the
minimizer qU

k of wk(q) along W TD�1
k rf ðxkÞ and the minimizer of wk(q),i.e.
qm
k ¼ argmin

q2R2

wkðqÞ: ð4:3Þ
The above least square problem can be solved without much effort either via the QR decomposition of the
n · 2 matrix F 0ðxkÞD�1

k W or by solving the normal equation, that is the following 2 · 2 linear system:
kv1k2 vT
2 v1

vT
2 v1 kv2k2

" #
q1

q2

� �
¼ �kD�1

k rf ðxkÞk
0

" #
where v1 ¼ F 0ðxkÞD�1
k w1 and v2 ¼ F 0ðxkÞD�1

k w2. We remark that both approaches require two Jacobian-vector
products in order to compute v1 and v2.

The dogleg strategy can be summarized in the following algorithm where we use the following simplifica-
tions. In place of WW TD�1

k rf ðxkÞ we compute D�1
k rf ðxkÞ, since these two vectors coincide as D�1

k rf ðxkÞ
belongs to DkSk. Further, the first column of W is chosen as D�1

k rf ðxkÞ=kD�1
k rf ðxkÞk so that we have

W TD�1
k rf ðxkÞ ¼ ½kD�1

k rf ðxkÞk; 0�T.

Dogleg two dimensional subspace strategy

Input parameters xk 2 Rn, Dk > 0, �sk 2 Rn.

1. Compute D�1
k rf ðxkÞ and w1 ¼ D�1

k rf ðxkÞ=kD�1
k rf ðxkÞk.

2. Compute w2 ¼ Dk�sk � ðwT
1 Dk�skÞw1. Set w2 = w2/iw2i.

3. Set W = [w1,w2].
4. Compute qm

k ¼ argminq2R2wkðqÞ.
5. Compute qU

k ¼ argmins>0wkð�sW TD�1
k rf ðxkÞÞ setting
qU
k ¼ �

kD�1
k rf ðxkÞk2

kF 0ðxkÞD�2
k rf ðxkÞk2

W TD�1
k rf ðxkÞ:
6. Find the dogleg solution qtr
k to (4.1) by setting:
qtr
k ¼

qm
k ; if kqm

k k 6 Dk;

� Dk
kD�1

k rf ðxkÞk
W TD�1

k rf ðxkÞ; if kqU
k kP Dk;

uqm
k þ ð1� uÞqU

k ; u 2 ð0; 1Þ; s:t:kqtr
k k ¼ Dk; otherwise:

8><
>: ð4:4Þ
7. Compute str
k ¼ D�1

k Wqtr
k .
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Summarizing, the step qtr
k is the classical dogleg solution to (4.1), while the approximate solution str

k of (3.3),
is obtained as the intersection of the trust region with the piecewise-linear path connecting zero, the minimizer
of mk(s) along the scaled steepest descent direction D�2

k rf ðxkÞ and D�1
k Wqm

k .
Regarding the shape of the trust-region, in our computations we adopted a spherical trust-region (Dk = I,

for all k > 0) as well as an elliptical one. In this latter case, letting kðF 0kÞlk be the lth column of F 0(xk), the lth
diagonal element of the matrix Dk has been chosen as follows:
ðD0Þl ¼ kðF 00Þlk1;
and
ðDkþ1Þl ¼
maxðkðF 0kÞlk1; 0:6ðDkÞlÞ; if k ¼ m � Diter for some integer m;

ðDkÞl; otherwise:

�
ð4:5Þ
This update technique has been proposed in [12] with Diter = 1, i.e. the update is performed at each iteration.
Here, due to the quite relevant cost of the computation of kðF 0kÞlk at each iteration, we update the diagonal
matrix every Diter = 50 iterations.
4.3. Scaling and stopping criterion

We enrich all the presented methods with the scaling strategy suggested in [25]. More precisely, at each
nonlinear iteration k, each row of the Jacobian matrix F 0(xk) and the corresponding element of the right-
hand-side �F(xk) are rescaled by the sum of the absolute values of the entries in the corresponding row of
the Jacobian matrix, i.e. the Jacobian matrix and the right-hand-side are premultiplied by the diagonal
matrix whose ith diagonal entry is given by 1=

Pn
j¼1jðF 0ðxkÞÞi;jj. The same scaling is applied to F(xk+1) in

the termination test.
For all the methods considered here convergence is declared when the following condition is met:
kF ðxkþ1Þk 6 tol; ð4:6Þ

where tol is a user supplied tolerance. On the other hand, failure is declared if a maximum number of iter-
ations maxit are performed without satisfying condition (4.6). Moreover, a failure of the INB method is de-
tected also if condition (3.10) is not satisfied within 10 backtracks; a failure of the ESTR method and of the
HIN method is declared whenever the trust-region size is reduced below

ffiffiffiffiffi
�m
p

.

5. Numerical results

In this section we present some numerical results. The aim of this experimentation is twofold. First, we
intend to investigate the effect of some implementation choices on the behaviour of the globalization strate-
gies. Namely, the scaling of the problems, the trust-region shape in the ESTR method and the maximum num-
ber of backtracks along the inexact Newton step before switching to the trust-region strategy in the HIN
method. Second, we wish to verify if the proposed hybrid strategy enhances the robustness of the INB method.
Namely, we present comparisons between the following six codes:

� INB-S (INB method with scaling of the problem).
� INB (INB method without scaling of the problem).
� SSTR (Spherical Subspace Trust-Region method without scaling of the problem (Dk = I for all k’s in the

ESTR method)).
� ESTR-S (ESTR method with scaling of the problem (Dk given by (4.5))).
� HIN-S-2 (HIN method, with MAXBT=2, scaling of the problem and elliptical trust-region (Dk given by

(4.5))).
� HIN-S-4 (HIN method, with MAXBT=4, scaling of the problem and elliptical trust-region (Dk given by

(4.5))).
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All the codes are written in C with double precision variables and we run them on a PC with AMD Opter-
on(tm) Processor 250 and 2 GB of RAM.

For all the methods we set to 600 the maximum number of GMRES iterations, to 200 the restart value, and
we adopted the following choices: gmax = 1.0 � 1.0E�4, t = 1.0E�4, hm = 0.1, hmax = 0.5. Further, Algo-
rithms ESTR and HIN were run setting D0 = 1.0, Dmin = 1.0E�4, a1 = 0.5, b1 = 0.25, b2 = 0.75. For all the
methods, we set the stopping tolerance tol = 1.0E�6 and the maximum number of nonlinear iterations
maxit = 200.

We adopted the four choices of �gk’s described in Section 4.1; specifically choice 2 was implemented with
c = 0.9 and a = 2 and g0 = 0.1 was used for both the adaptive choices. The linear systems were solved employ-
ing codes belonging to the PETSc library [2].

We considered two classical CFD benchmark problems: the Lid Driven Cavity and the Backward Facing
Step, with wide-ranging Reynolds numbers and discretization grids.

In all our run we used k = 0 in (2.7) and as initial guess the solution of the corresponding Stokes problem.
We remark that we always compare codes with the same choice of the forcing terms.
To visualize the overall performances of the considered globalization strategies, we employ the performance

profiles approach [13]. In this approach, when m solvers are compared on a test set, the performance of each
solver in the solution of a test is measured by the ratio of its computational effort and the best computational
effort by any solver on this test. Here we use two different quantities to measure the computational effort of
each code: the total number of GMRES iterations and the number of function evaluations performed during
the overall solution of each test. Specifically, for each test t solved by the solver s we denote by Qs,t the total
number of GMRES iterations (or the number of function evaluations) required by the solver s to solve the test
t. Moreover, we denote by Qs,t the lowest number of GMRES iteration (or function evaluations) required by
all the solvers to solve test t. Then, the ratio
qs;t ¼
Qs;t

Qs;t
measures the performance on test t by solver s with respect to the best performance among all the solvers on
such test. Clearly, qs,t P 1 and qs,t = 1 means that the solver s is the most effective in solving the test t over all
the solvers. Then, the performance profile of solver s is defined as
psðsÞ ¼
no: of tests s:t: qs;t 6 s

total no: of tests
; s P 1:
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Fig. 1. Cavity problem, g: choice 1, GMRES iterations.
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Moreover, assume that a parameter qM > qs,t for all s,t is chosen. Then, if the solver s fails in solving test t, qs,t

is set to qM. Note that qs,t = qM if and only if solver s does not solve test t. As a result of this convention
ps(qM) = 1 and lims!q�M

psðsÞ is the probability that the solver solves a problem. Moreover, the performance
profiles flattens for s 2 ½�s; qM � for some �s < qM . Then, if ps(s) is plotted in ½0;�s�, the value of lims!q�M

psðsÞ
can be readily seen in the performance profile’s plot and the right side of the plot gives the percentage of
the test problems that were successfully solved by the solver. On the other hand, the left side of the plot gives
the percentage of test problems for which the solver is fastest. We report some performance profiles in Figs. 1–
4, 8–11. In all the figures the dashed line with circle markers corresponds to the HIN-S-2 method and the
dashed line with the x-marks to the HIN-S-4 method. The dotted line with up-pointing triangular markers
corresponds to the INB-S method and the dotted line with down-pointing triangular markers corresponds
to INB method. Finally, the dash-dotted line with pentagram markers refers to the ESTR-S method, while
the dash-dotted line with square markers refers to the SSTR method.
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Fig. 2. Cavity problem, g: choice 1, function evaluation.
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Fig. 3. Cavity problem, g: choice 2, GMRES iterations.
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Fig. 4. Cavity problem, g: choice 2, function evaluation.
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Fig. 5. Cavity problem, g: choice 2, comparison of the angles between s�k and �rf ðx�kÞ.
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5.1. Lid driven cavity

The lid driven cavity problem is a classical CFD benchmark problem [18]. The geometry of this problem is
the unit square, we impose no slip boundary conditions (u1 = u2 = 0) on the two vertical walls and on the bot-
tom of the cavity and u1 = 1 and u2 = 0 on the top of the cavity. We solved it with the following Reynolds
numbers: Re = 1000, 2000, 3000, 4000, 5000, 6000, 8000, 10000 and using essentially uniform grids with a reg-
ular distribution of nodes, with the following number of nodes: 437, 843, 1652, 2684, 4079, 11354, 19803. All
these meshes are uniformly subdivided in nine subdomains for the Schwarz preconditioner. Then, from the lid
driven cavity problem we obtain 56 tests (8 Reynolds numbers · 7 meshes).

The considered grids ranges from very coarse grids, where the approximate solution of the problem is
widely inaccurate and hard to get, to quite fine grids, where the solution is more accurate and easier to get.
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Fig. 8. BFS problem, g: choice 1, GMRES iteration.

Fig. 7. Geometry of the backward facing step.
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Fig. 9. BFS problem, g: choice 1, function evaluation.
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Fig. 10. BFS problem, g: choice 2, GMRES iterations.
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In Table 1, we report, for each choice of the forcing terms and for each code, the number of successes over
the 56 tests. In the last column

P
g is the number of successes of each code with all the considered choices of

the forcing terms (224 runs), i.e. is the sum of the previous entries of the same row of the table.
In Figs. 1–4 we compare the performance profiles of the codes, according to the two adopted computational

effort measures, with forcing terms given by choice 1 and choice 2, respectively.
As we can see from Table 1 and Figs. 1–4, these tests are quite difficult to be solved. We underline that the

large number of failures is also due to the quite coarse grid we consider. However, in some cases it is important
to compute a solution of the nonlinear system on such grids, too. For example, coarse grids are usually the
starting point of an adaptive method. Anyway, the hybrid approach is the more robust; the HIN-S-2 method
solves about the 42% of tests with choice 1 of gk’s, and this percentage increases about to 75% with choice 2 of
gk’s. Regarding the robustness of the method HIN-S-4 performs slightly worse, as it succeeded on the 39% and
75% of tests with forcing terms given by choice 1 and choice 2, respectively. On the other hand INB-S solves
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Fig. 11. BFS problem, g: choice 2, function evaluation.

Table 1
Cavity: number of successes over 56 tests

Choice1 Choice2 g = 1.0E�1 g = 1.0E�4
P

g

HIN-S-2 23 41 25 16 105
HIN-S-4 22 40 23 16 101
INB-S 17 37 20 11 85
INB 10 25 11 7 53
ESTR-S 12 26 20 12 70
SSTR 15 38 11 12 76
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the 30% of test with choice 1 of forcing terms and 65% of tests with gk’s given by choice 2. It is also evident that
the scaling enhances robustness of the INB approach. Focusing on the trust-region method, it can be observed
that the elliptical trust-region with scaling deteriorates the performance of this approach (only 45% of test suc-
cessfully solved by ESTR-S against the 65% of SSTR, with choice 1 of gk’s). This is quite surprising as the
elliptical shape of the trust-region plays a key role in the performance of the HIN approach as well as the scal-
ing is crucial to improve robustness of all the other methods.

Regarding the efficiency of the considered codes, we can see that we do not have a clear winner, even if, with
gk’s chosen according to choice 2, the spherical trust-region performs better. We underline that the perfor-
mance profile of the HIN-S and the INB-S codes is almost the same for small values of s. This is nice as it
means that the switch to the trust-region strategy does not affect the performance of the HIN method in solv-
ing problems where also the backtracking strategy works well.

More insight into the behaviour of the HIN method can be gained monitoring the angle between the
gradient of f(x) at xk and the selected step sk. We remark that the INB-S and the HIN-S method coincide
up to the iteration �k where the INB-S method performed more than MAXBT backtracks and the hybrid
method switches to the subspace trust-region strategy. As an example, we focus on HIN-S-2 and INB-S
with gk’s given by choice 2, and for each test successfully solved by HIN-S-2 method and unsolved by the
INB-S method we plot in Fig. 5 two points. That denoted by the x-mark shows the value of the angle
between the step s�k produced by the INB-S method and �rf ðx�kÞ; the point marked by a circle displays
the value of the angle between the step s�k employed by the HIN-S-2 method and �rf ðx�kÞ, both at the
first occurrence of a switch. This figure clearly shows, in a compact form, that when the INB-S method
fails, the inexact Newton step is nearly orthogonal to the gradient of the function f. On the other hand,
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when the hybrid approach manages to overcome these failures, the elliptical subspace trust-region strategy
produces a step s�k slightly better angled with respect to �$f(xk) and this yields the convergence of the
procedure. We remark that the step s�k is never nearly parallel to the gradient of f. Thus, the hybrid
method does not reduce to the steepest descent algorithm. In Fig. 6 we further restrict our attention to
a representative test, namely that obtained with Re = 6000 and 843 nodes. This tests corresponds to test
thirteen in Fig. 5. The upper graph in Fig. 6 plots the value of the angles between the step sk chosen by
the hybrid method and �$f(xk) throughout the convergence process; the bottom graph shows the number
of tentative steps computed by the trust-region strategy at each nonlinear iteration (denoted by STRiter in
the picture’s label) of the HIN-S-2 method. From the comparison between the two graphs we can observe
that when the trust-region strategy is activate the angle formed by sk and �$f(xk) is close to 90o and
reductions of the trust-region radius give rise to reductions of the angle.

We underline that when also the hybrid method fails, failures are due to a quasi stagnation of the proce-
dure: the method achieves sufficient reduction of iFi to proceed, but not enough to achieve the satisfaction of
the stopping criterion within 200 nonlinear iterations.

We would like to stress that the elliptical shape of the trust-region was fundamental to enhance robustness
of the HIN method. In fact, we performed several runs employing spherical trust-regions in the HIN method.
However, the switch to the spherical trust-region did not produce any benefit, as the step produced by the
trust-region was nearly parallel to the inexact Newton step until the trust-region radius became very small.
Then, also the trust-region approach failed in producing a sufficient reduction of the nonlinear residual. This
behaviour is to be ascribed to the badly scaling of the problems; we verified that the inexact Newton step
became very long while the Cauchy step was very short.

In order to show that these problems become more and more difficult to be solved as the Reynold number
increases and the number of nodes decreases, in Tables 2 and 3 we report the number of total failures of the
HIN-S-2 method, HIN-S-4 method, SSTR method and INB-S method, all with choice 2 of the forcing terms,
for each considered Reynolds number and for each considered grid.

Finally, to give an idea on the overall cost of the HIN approach, in Table 4, we give detailed results of our
experimentation with the HIN-S-2 method and with choice 2 of the forcing terms on the finest grid. The fol-
lowing values are given in the tables:
Table 2
Cavity problem: number of failures over 7 tests for each Reynolds number

Re INB-S HIN-S-2 HIN-S-4 SSTR

1000 0 0 0 0
2000 1 1 1 1
3000 1 1 1 1
4000 2 1 1 2
5000 2 1 2 1
6000 3 2 2 3
8000 4 4 4 5
10000 6 5 5 5

Table 3
Cavity problem: number of failures over eight tests for each grid

Node INB-S HIN-S-2 HIN-S-4 SSTR

437 7 7 7 6
843 4 2 2 2
1652 4 3 4 1
2684 1 2 1 0
4079 2 1 2 3
11354 0 0 0 2
19803 1 0 0 4



Table 4
Cavity: HIN-S-2, g = Choice 2, 19,803 nodes

Re iter GMiterM dGMitere nbtM ntrM nsw ifi2

1000 15 141 44.07 1 0 0 2.97E�9
2000 22 134 34.14 1 0 0 6.61E�7
3000 32 129 36.78 1 0 0 2.20E�7
4000 48 128 33.85 1 0 0 6.91E�7
5000 60 126 50.10 1 0 0 9.96E�7
6000 79 130 43.03 1 0 0 9.83E�7
8000 111 109 50.72 2 2 32 9.44E�7
10000 137 108 51.20 2 2 53 8.66E�7
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� iter: number of nonlinear iterations;
� dGMitere: average number of GMRES iterations per inexact Newton step;
� GMiterM: maximum number of GMRES iterations;
� nbtM: maximum number of backtracks along �sk;
� ntrM: maximum number of trust-region radius reductions;
� nsw: number of switches to subspace trust-region strategy.

At this regard, we remark that the method succeeds in solving all tests. The tests corresponding to Reynolds
number up to 6000 are solved without switching to the trust-region, that means that they are successfully
solved by the INB-S method, too. On the other hand, switching occurs in the last two tests of the table.
We note that the number of nonlinear iterations grows with the Reynolds number.

5.2. Backward facing step

The backward facing step is an interesting prototype for an internal, separated flow [23]. The geometry is
described in Fig. 7 the parameters used in this simulations are L = 44, l = 6, H = 2, h = 1.

A laminar fully developed velocity profile is imposed at the inflow section of dimension h. Homogeneous
Neumann boundary conditions 1

Re
ou
on̂� pn̂ ¼ 0 are imposed at the outflow of dimension H. No-slip boundary

conditions are applied on the top and the bottom walls. The characteristic velocity used to define the Reynolds
number is the maximal physical velocity in the inflow section, the characteristic length is the difference between
the physical height of the channel at outflow and at the inflow sections.

We solved this problem with Reynolds numbers: Re = 200, 400, 500, 600, 650, 700, 800 and using quasi
uniform grids of 1058, 2412, 6703, 13463, 22181 nodes, all the meshes are subdivided in nine subdomains
for the Schwarz preconditioner.Then, we obtain 35 tests.

In Table 5 we report, for each choice of the forcing terms and for each code, the number of successes
over the 35 tests. In the last column

P
g is the number of the successes of each code over all the consid-

ered choices of the forcing terms (140 runs), i.e. is the sum of the previous entries on the same row of the
table.

In Figs. 8 and 9 we plot the performance profiles of the codes with forcing terms chosen according to choice

1, while in in Figs. 10 and 11 we plot the performance profiles of the codes with forcing terms chosen according
to choice 2.
Table 5
Backward facing step: number of successes over 35 tests

Choice1 Choice 2 g = 1.0E�1 g = 1.0E�4
P

g

HIN-S-2 34 35 34 30 133
HIN-S-4 34 34 34 31 133
INB-S 33 33 33 24 123
INB 23 28 27 21 99
ESTR-S 35 34 31 25 125
SSTR 32 31 34 26 123



Table 6
BFS: HIN-S-2 method, g = Choice 2, 22181 nodes

Re iter GMiterM dGMitere nbtM ntrM nsw i f i2

200 7 79 33.29 1 0 0 8.14E�8
400 16 67 27.44 1 0 0 2.17E�8
500 34 60 24.91 1 0 0 6.56E�7
600 84 66 28.37 2 2 9 6.47E�7
650 87 62 27.55 1 0 0 5.84E�7
700 93 59 27.57 1 0 0 9.57E�7
800 107 56 28.43 1 0 0 8.47E�7
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From these plots is quite evident that this problem is less difficult to be solved by the considered codes than
the cavity problem. In any case, both the hybrid strategies are quite robust and the HIN-S-2 (choice 2) method
solves all the tests. Moreover, we remark that all the failures of the INB-S method are to be ascribed to the fact
that the gradient of f is nearly orthogonal to the inexact Newton step and the switch to the trust-region strat-
egy allowed to overcome these failures.

It should be noted that, in this case the elliptical subspace trust-region strategy performs better, in
terms of robustness, than the spherical one as it solves about the 95% of the tests with forcing terms given
by choice 2 and all the tests with choice 1 of gk’s. Regarding the efficiency, again the HIN method and the
INB have a very similar behaviour, to confirm that the switching to the trust-region strategy does not add
any extra cost in the solution of tests that are easily solved by the backtracking strategy. Comparing all
codes with gk’s given by choice 1, we can observe that INB-S, HIN-S-2 and HIN-S-4 are the best, in terms
of F-evaluations, on about the 60% of tests. Considering the computational effort given by the number of
GMRES iterations, they are the most efficient on about the 40% of tests. On the other hand, focusing on
choice 2 of the forcing terms, there is not a clear winner; the SSTR method requires less GMRES itera-
tions on about the 40% of tests while the INB-S and the hybrid methods are the best according to the
number of function evaluations.

To give an idea on the overall cost of the HIN approach, in Table 6, we give detailed results of our exper-
imentation with the HIN-S-2 method and g=choice 2 on the finest grid.

5.3. Conclusions on the numerical tests

Some conclusions can be drawn from these numerical results:

� The combination of the two globalization strategies enhances the classical backtracking approach. More
precisely, mainly it improves robustness whenever the backtracking strategy fails as the gradient of f(x)
and the inexact Newton step are nearly orthogonal.
� At the same time, focusing on the efficiency of the codes, the HIN-S and the INB-S approach perform very

similarly; in fact, we underline that the HIN-S method reduces to INB-S in all the situations in which INB-S
succeeds performing no more than MAXBT backtracks. More precisely, solving the cavity problem, on a
total of 54 tests successfully solved by INB-S, HIN-S-2 and HIN-S-4 switch to the trust-region strategy only
in the solution of 5 tests and 1 test, respectively. Regarding BFS problem, HIN-S-4 reduces to INB-S on all
the 66 tests successfully solved by INB-S, while HIN-S-2 activates the alternative strategy only in the solu-
tion of 1 of such tests.
� Failures of the INB-S method are to be ascribed to failure of the globalization procedure, i.e. the backtrack-

ing lacks in producing an acceptable step within 10 steplenghts reductions. This happens in the 100% of
failures with the BFS problem and in the 90% of tests arising by the cavity problem.
� Despite the employment of the subspace trust-region strategy allows to enhance robustness of the back-

tracking procedure, neither the spherical trust-region nor the elliptical one seem to be competitive with
the HIN approach for all the tests.
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Appendix A

Here we sketch the proofs of the convergence results (Theorems 3.2 and 3.3) of the ESTR Method and HIN
Method. First, we show some key results regarding both methods.

First, we note that, the vector sk ¼ argminfkDk sk6Dk ;s2SkgmkðsÞ produces a decrease in the model function mk,
greater than the reduction attained by the so called Cauchy point. In other words, the following inequality holds:
mkð0Þ � mkðskÞP mkð0Þ � mkðsc
kÞ ðA:1Þ
where sc
k is the Cauchy point, i.e. the minimizer of mk along the scaled steepest descent direction subject to

satisfying the trust-region bound, that is
sc
k ¼ �skD�2

k rf ðxkÞ; ðA:2Þ

where sk ¼ argmins>0fmkð�sD�2

k rf ðxkÞÞ : ksD�1
k rf ðxkÞk 6 Dkg [24]. We underline that relation (A.1) holds

because D�2
k rf ðxkÞ 2 Sk and this obviously yields mkðskÞ 6 mkðsc

kÞ. We remark that the approximate trust-re-
gion solution str

k provided by the dogleg two dimensional subspace strategy satisfies (A.1), too.
Moreover, a classical trust-region result [24] shows that a step sk satisfying (A.1), satisfies the following

inequality:
mkð0Þ � mkðskÞP
1

2
kD�1

k rf ðxkÞkmin Dk;
kD�1

k rf ðxkÞk
kF 0ðxkÞD�1

k k
2

 !
: ðA:3Þ
First, we prove that both the ESTR method and the HIN method are well defined. These methods contain the
same repeat loop, that is the repeat loop at Step 3 of the ESTR method and the repeat loop at Step 3.2 of the
HIN method. Next theorem shows that this repeat loop terminates.

Lemma 6.1. Let xk be the kth iterate generated by either the ESTR method or the HIN method, and

B(xk,r) = {x|ix � xki 6 r}. Assume that there exists r > 0, such that F 0 is Lipschitz continuous in B(xk,r) and

iF 0(x)i is bounded above on B(xk,r). Then, if $f(xk) 6¼ 0, there exists Dk > 0 such that sk ¼
argminfkDksk6Dk ;s2SkgmkðsÞ satisfies (3.7).

Proof. Let cL be the Lipschitz constant of F 0 in B(xk,r). From the Lipschitz continuity of F 0 it follows that
$f(x) = F 0(x)TF(x) is Lipschitz continuous in B(xk,r) with constant ĉ ¼ cL~cþ ~c2, where ~c ¼
maxfsupx2Lf ðxÞ; supx2LkF 0ðxÞkg and L ¼ [1k¼0fx 2 Rnjkx� xkk 6 rg (see [24]). Let b̂ be a positive constant such
that kF 0ðxÞk < b̂, whenever x 2 B(xk,r).

From the Taylor’s Theorem it follows
f ðxk þ skÞ ¼ f ðxkÞ þ rf ðxkÞTsk þ
Z 1

0

ðrf ðxk þ nskÞ � rf ðxkÞÞTsk dn
then, as iDkski 6 Dk, we get
jmkðskÞ � f ðxk þ skÞj ¼
1

2
sT

k F 0ðxkÞTF 0ðxkÞsk �
Z 1

0

ðrf ðxk þ nskÞ � rf ðxkÞÞTsk dn

����
���� 6 1

2
ðb̂2kskk2 þ ĉkskk2Þ

6
kD�1

k k
2D2

k

2
ðb̂2 þ ĉÞ:
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This, along with (3.7) and (A.3), yields
jqf
k ðskÞ � 1j ¼ mkðskÞ � f ðxk þ skÞ

mkð0Þ � mkðskÞ

����
���� 6 kD�1

k k
2D2

kðb̂2 þ ĉÞ

kD�1
k rf ðxkÞkmin Dk;

kD�1
k rf ðxkÞk

b̂2kD�1
k k

2

� � :
Then, there exists �Dk such that min Dk;
kD�1

k rf ðxkÞk
b̂2kD�1

k k
2

� �
¼ Dk and

kD�1
k k

2Dkðb̂2þĉÞ
kD�1

k rf ðxkÞk
< 1� b1 whenever Dk < �Dk. This im-

plies qf
k ðskÞ > b1, whenever Dk < �Dk, i.e. the repeat loop terminates after a finite number of reductions of the

trust-region radius. h

The convergence results given in Theorems 3.2 and 3.3 can be obtained exploiting the following theorem of
[15].

Theorem 6.1. [15, Th. 3.3–3.4] Let {xk} be a sequence such that, for each k,
kF ðxkÞ þ F 0ðxkÞskk 6 gkkF ðxkÞk; ðA:4Þ
kF ðxk þ skÞk 6 ð1� tð1� gkÞÞkF ðxkÞk; ðA:5Þ
where sk = xk+1 � xk, gk 2 [0,1) and t 2 (0,1). Then,

(a) If
P1

k¼0ð1� gkÞ is divergent, then iF(xk)i! 0.

(b) If iF(xk)i! 0 and x* is a limit point of {xk} such that F 0(x*) is invertible, then F(x*) = 0 and xk! x*.

It is easy to show that the sequences {xk} and {gk} generated by the HIN method satisfy the Assumptions
of the above theorem. In fact, if sk is computed in Step 2, (A.4) is verified (see [15]) and (A.5) obviously holds,
too. On the other hand, if sk is computed in Step 3, then (A.4) is verified with gk = iF(xk) + F 0(xk)(sk)i/iF(xk)i.
Note that, gk is ensured to be smaller than one, since sk is the minimizer of mk(s) in Sk, within the trust-region
and mk(0) = iF(xk)i2. Further, (3.7) and (A.4) yield:
kF ðxk þ skÞk2
6 kF ðxkÞk2 � b1ðkF ðxkÞk2 � kF ðxkÞ þ F 0ðxkÞskk2Þ 6 ð1� b1ÞkF ðxkÞk2 þ b1g

2
kkF ðxkÞk2

6 ð1� b1ð1� gkÞÞkF ðxkÞk2
:

Noting that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b1ð1� gkÞ

p
6 1� b1ð1� gkÞ=2, we can conclude that (A.5) is satisfied with t = b1/2. From

the above discussion, it is clear that the sequences {xk} and {gk} generated by the ESTR method satisfy the
assumptions of the above theorem, too.

Then, using the above theorem and classical results of global convergence of trust-region methods, we can
prove Theorem 3.2.

Proof of Theorem 3.2. Let cL be the Lipschitz constant of F0(x) in L, and vD and nD be such that iDki < vD and
kD�1

k k < nD for k P 0. First, with a slight modification of Theorems 4.7–4.8 of [24], by (A.3)
limk!1kD�1

k rf ðxkÞk ¼ 0 follows. The modifications are needed in order to deal with elliptical trust-regions.
Then by kD�1

k rf ðxkÞkP krf ðxkÞk=vD, we get (3.8) and since $f(x*) = F 0(x*)TF(x*) and F 0(x*) is invertible by
hypothesis, this yields F(x*) = 0. Moreover, as the sequence {iF(xk)i} is monotone decreasing and bounded
below, it follows limk!1 iF(xk)i = 0.

Second, by using Theorem 6.1 we get xk! x*.
Assume that k is sufficiently large that F0(xk) is invertible and iF 0(xk)�1i 6 nF for some nF > 0. This is

ensured by the invertibility of F 0(x*). Further, let �sk be the inexact Newton step computed in Step 1 of the
ESTR method, ~Dk be the initial trust-region radius at the first iteration of the repeat-loop in Step 3 and sk be
the solution of the elliptical trust-region subproblem (3.5) with Dk ¼ ~Dk. Now, we will show that for k

sufficiently large the step sk is accepted.
From Theorem 11.1 in [24] it follows that
kF ðxk þ skÞk2 ¼ kF ðxkÞ þ F 0ðxkÞsk þ wðxk; skÞk2
;
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where
wðxk; skÞ ¼
Z 1

0

ðF 0ðxk þ nskÞ � F 0ðxkÞÞsk dn:
From the Lipschitz continuity of F 0 it follows that kwðxk; skÞk 6 cL
2
kskk2. Then, as sk satisfies (3.5) we get
kF ðxkÞ þ F 0ðxkÞskk 6 kF ðxkÞk ðA:6Þ

and
jkF ðxkÞ þ F 0ðxkÞskk2 � kF ðxk þ skÞk2j 6 2kF ðxkÞ þ F 0ðxkÞskkkwðxk; skÞk þ kwðxk; skÞk2

6 kF ðxkÞkcLkskk2 þ ðcL=2Þ2kskk4 ðA:7Þ
To prove the thesis we need to show that sk satisfies condition (3.7). First, note that from (3.1) it follows
k�skk 6 kðF 0ðxkÞÞ�1kðkF ðxkÞk þ krkkÞ 6 2nF kF ðxkÞk: ðA:8Þ

Then, as ~Dk P Dmin, limk!1 iF(xk)i = 0 and iDki < vD, it follows
kDk�skk 6 ~Dk;
for k sufficiently large, i.e. eventually the inexact Newton step belongs to the trust-region with Dk ¼ ~Dk. Con-
sider the denominator of (3.7) and assume kDk�skk 6 ~Dk. Then, as sk is the solution of (3.5) for Dk ¼ ~Dk, we
have:
kF ðxkÞk2 � kF ðxkÞ þ F 0ðxkÞskk2 P kF ðxkÞk2 � kF ðxkÞ þ F 0ðxkÞ�skk2 P kF ðxkÞk2 � �g2
kkF ðxkÞk2

P ð1� g2
maxÞkF ðxkÞk2

: ðA:9Þ
Moreover, taking into account (A.6) we get
kskk 6 2kðF 0ðxkÞÞ�1kkF ðxkÞk 6 2nF kF ðxkÞk ðA:10Þ

and this along with (A.9) yields
kF ðxkÞk2 � kF ðxkÞ þ F 0ðxkÞskk2 P
ð1� g2

maxÞ
4n2

F

kskk2
: ðA:11Þ
Then, by (3.7), (A.7), and (A.11) we get
jqf
k ðskÞ � 1j ¼ mkðskÞ � f ðxk þ skÞ

mkð0Þ � mkðskÞ

����
���� 6 ðkF ðxkÞkcL þ ðcL=2Þ2kskk2Þkskk2

1
4n2

F
ð1� g2

maxÞkskk2
Moreover, as from (A.10) it follows that limk!1iski = 0, we get
lim
k!1
kF ðxkÞkcL þ ðcL=2Þ2kskk2 ¼ 0:
Then, for k sufficiently large, we have qf
k ðskÞP b1 and the step sk is accepted. Moreover, as the inexact New-

ton step eventually is feasible and kF 0ðxkÞsk þ F ðxkÞk 6 kF 0ðxkÞ�sk þ F ðxkÞk it follows that sk satisfies (3.9) for k

sufficiently large.

Now, we turn our attention to the convergence properties of the HIN method. First, we observe that if
there are is finite number of steps generated by the ESTR technique, i.e. if eventually the steps are generated
by the INB strategy, the convergence behaviour of the HIN method is given by Theorem 3.1. Then, in the
following lemma we focus on the case where an infinite number of steps generated by the ESTR technique
are taken. We omit the proof of this result as it is a slight modification of Theorems 4.7–4.8 of [24].

Lemma 6.2. Let r > 0 and L ¼ [1k¼0fx 2 Rnjkx� xkk 6 rg be a neighborhood of the sequence {xk} generated by

the HIN method. Assume that F 0 is Lipschitz continuous in L and iF 0(x)i is bounded above on L. Suppose
furthermore that there exists a limit point x* of {xk}, $f(xk) 6¼ 0 for k P 0, the sequences {iDki} and fkD�1

k kg are

bounded above. If there exists a subsequence fxkjg ! x� such that eventually skj is computed in Step 3, then
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lim
kj!1

krf ðxkjÞk ¼ 0:
Now we are ready to establish the main convergence theorem of the HIN method.

Proof of Theorem 3.3. Let fxkjg be a subsequence such that fxkjg ! x� and KINB be the set of indices such that
skj is computed in Step 2 for any kj 2 KINB. The sequence {iF(xk)i} is monotone decreasing and bounded from
below, then it is convergent. Hence, limk!1iF(xk)i = iF(x*)i.

First, assume that KINB contains an infinite number of indices. Since in Step 2 at most MAXBT backtracks
are performed, it follows that
1� gkj
P hMAXBT ð1� �gkjÞP hMAXBT ð1� gmaxÞ for any kj 2 KINB:
Therefore, the series
P

kj2KINB
ð1� gkj

Þ is divergent and this implies the divergence of the series
P1

k¼0ð1� gkÞ.
Then from Theorem 6.1, Part a, we get limk!1iF(xk)i = iF(x*)i = 0.

On the other hand, if KINB is finite, skj is computed in Step 3 for kj sufficiently large. Then, by Lemma 6.2
we obtain
lim
k!1
rf ðxkjÞ ¼ rf ðx�Þ ¼ 0:
Since $f(x*) = F 0(x*)TF(x*) and F 0(x*) is invertible by hypothesis, we get F(x*) = 0 and Part a follows.
Part b follows from Theorem 6.1, Part b and Part c derives from the convergence result of Algorithm INB

given in Theorem 3.1.
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